
Duality 
If x(t) ←→ X (ω), then 

CTFT 

X (t) ←→ 2πx(−ω) 
CTFT 

This  is  known as  the  duality proper ty of the  Fourier transform. 
 

This  property follows from the  high degree  of symmetry in the  forward and 

inverse  Fourier transform equations, which are  respectively given by 

X (λ ) = 
{  ∞ ∞ 

−∞  −∞  
x(θ)e− jθλdθ and x(λ ) =  1 

2π 

{  

X (θ)e jθλdθ. 

That is , the  forward and inverse  Fourier transform equations  are  identical 

except for a  factor of 2π and different sign in the  parameter for the  

exponential function. 
 

Although the  re la tionship x(t) ←→ X (ω) only directly provides  us  with the  

Fourier transform of x(t), the  duality property a llows us  to indirectly infer the  

Fourier transform of X (t). Consequently, the  duality property can be  used to 

effectively double the  number of Fourier transform pairs  that we know. 

CTFT 
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Convolution 

If x1(t) ←→ X1(ω) and x2(t) ←→ X2(ω), then 
 
 

x1 ∗ x2(t) ←→ X1(ω)X2(ω ).  
 
 

This  is  known as  the  convolution (or  time-domain convolution) 

proper ty of the  Fourier transform. 
 

In other words, a  convolution in the  time domain becomes a  multiplication in 

the  frequency domain. 
 

This  suggests  that the  Fourier transform can be  used to avoid having to 

deal with convolution operations . 

CTFT CTFT 

CTFT 
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Multiplica t ion (Frequency-Domain Convolution) 

CTFT CTFT 

If x1(t) ←→ X1(ω) and x2(t) ←→ X2(ω), then 

x1(t)x2 (t) ←→ 1  X1 ∗ X2(ω ) =  
CTFT    

2π 

1 
 { 

∞ 
2π −∞  

X1(θ)X2(ω − θ)dθ. 

This  is  known as  the  multiplication (or  frequency-domain convolution) 

proper ty of the  Fourier transform. 
 

In other words, multiplication in the  time domain becomes convolution in 

the  frequency domain (up to a  scale  factor of 2π ).  
 

1 Do not forget the  factor of in the  above  formula! 
2π 

This  property of the  Fourier transform is  often tedious  to apply (in the  

forward direction) as  it turns  a  multiplication into a  convolution. 
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Diffe rentia t ion 

If x(t) ←→ X (ω), then 
CTFT 

dx(t) 

dt 

CTFT ← → jωX (ω ).  

This  is  known as  the  differentiation proper ty of the  Fourier transform. 

Differentia tion in the  time domain becomes multiplication by  jω in the  

frequency domain. 
 

Of course, by repeated application of the  above property, we have  that   
d 

 n 
x(t) ( jω)nX (ω ).  ←→  dt 

CTFT 

The above suggests  that the  Fourier transform might be  a  useful tool 

when working with differentia l (or integro-differential) equations . 
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Frequency-Domain Diffe rentia t ion 

If x(t) ←→ X (ω), then 
CTFT 

tx(t) ←→ j 
dω 

X (ω ).  
CTFT d 

This  is  known as  the  frequency-domain differentiation proper ty of the  

Fourier transform. 
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Integra t ion 

If x(t) ←→ X (ω), then 
CTFT 

 { t 
 

 
 

−∞  
x(τ)dτ  ←→  CTFT 1 

jω 
X (ω) +  πX (0)δ(ω ).  

This  is  known as  the  integration proper ty of the  Fourier transform. 

Whereas  differentia tion in the  time domain corresponds  to multiplication 

by  jω in the  frequency domain, integration in the  time domain is  

associated with division by  jω in the  frequency domain. 

S ince  integration in the  time domain becomes divis ion by  jω in the  

frequency domain, integration can be  eas ier to handle  in the  frequency 

domain. 
 

The above property suggests  that the  Fourier transform might be  a  useful 

tool when working with integral (or integro-differential) equations . 
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Parseva l’s  Re la t ion 

Recall that the  energy of a  s ignal x is  given by 
{  ∞ 

−∞  |x(t)|2 dt . 

If x(t) ←→ X (ω), then 
CTFT 

 { ∞  1 
 { 

∞ 
−∞ 

| x(t)|2 dt  =  
2π −∞  

|X (ω)| dω 2 

(i.e., the  energy of x and energy of X are  equal up to a  factor of 2π). 

This  re la tionship is  known as  Parseval’s relation. 
 

Since  energy is  often a  quantity of great s ignificance  in engineering 

applications, it is  extremely helpful to know that the  Fourier transform 

preserves energy (up to a  scale  factor ).  
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Even and Odd Symmet ry 

For a  s ignal x with Fourier transform X , the  following assertions  hold: 
 
 

x is  even ⇔ X is  even; and 
 

x is  odd ⇔ X is  odd. 
 
 

In other words, the  forward and inverse  Fourier transforms preserve  

even/odd symmetry. 
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Real S igna ls  

A signal x is  real if and only if its  Fourier transform X satis fies  
 
 

X (ω) =  X ∗(−ω) for a ll ω 
 
 

(i.e., X has  conjugate symmetry). 
 

Thus, for a  real-valued s ignal, the  portion of the graph of a  Fourier 

transform for negative  values  of frequency ω is  redundant, as  it is  

completely determined by symmetry. 
 

From properties  of complex numbers, one  can show that X (ω) =  X ∗(−ω) 

is  equivalent to 
 
 

|X (ω)| =  |X (−ω)| and arg X (ω) =  − arg X (−ω) 
 
 

(i.e., |X (ω)| is  even and arg X (ω) is  odd). 
 

Note  that x being real does  not necessarily imply that X is  real. 
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Fourie r  Trans form of Periodic S igna ls  
The Fourier transform can be  generalized to a lso handle  periodic s ignals. 

Consider a  periodic s ignal x with period T and frequency ω0 =  2π . T 

Define  the  s ignal xT  as  

xT (t) =  

 
x(t) for − T ≤ t <  T 

2 2 

0 otherwise . 

(i.e., xT (t) is  equal to x(t) over a  s ingle  period and zero elsewhere). 

Let a denote  the  Fourier series  coefficient sequence  of x. 

Let X and XT  denote  the  Fourier transforms of x and xT , respectively. 

The  following rela tionships  can be  shown to hold: 
 

∞ 

X (ω ) =  ∑ 
k =−∞  

 
 

ak =  1 XT (kω0), and 

ω0XT (kω0)δ(ω − kω 0),  
 

 

∞ 

T 
X (ω ) =  ∑ 

k =−∞  

2πakδ(ω − kω 0).  
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Fourie r  Trans form of Periodic S igna ls  (Continued) 

The Fourier series  coefficient sequence  ak  is  produced by sampling XT  at 

integer multiples  of the  fundamental frequency ω0 and scaling the  

resulting sequence  by 1 . 
T 

The Fourier transform of a  periodic s ignal can only be  nonzero at integer 

multiples  of the  fundamental frequency. 
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Section 5.4 
 

 
 
 

Fourier Trans form and Frequency Spectra of Signals  
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Frequency Spectra  of S igna ls  

Like  Fourier series, the  Fourier transform also provides  us  with a  

frequency-domain perspective  on s ignals . 
 

That is , ins tead of viewing a  s ignal as  having information dis tributed with 

respect to time (i.e., a  function whose  domain is  time), we view a  s ignal as  

having information dis tributed with respect to frequency (i.e., a  function 

whose  domain is  frequency ).  
 

The Fourier transform of a  s ignal x provides  a  means  to quantify how 

much information x has  at different frequencies . 
 

The dis tribution of information in a  s ignal over different frequencies  is  

referred to as  the  frequency spectrum of the  s ignal. 
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Fourie r  Trans form and Frequency Spectra  

To gain further ins ight into the  role  played by the  Fourier transform X in the  

context of the  frequency spectrum of x, it is  helpful to write  the  Fourier 

transform representation of x with X (ω) expressed in polar form as  follows: 

x(t) =  1 
2π 

{  ∞ ∞ 

−∞ −∞ 
X (ω)e jωt dω  =  

1  
{  

 

 

2π 
|X (ω)| e j [ωt+ arg X (ω)]dω. 

In effect, the  quantity |X (ω)| is  a  weight that determines  how much the  

complex s inusoid at frequency ω contributes  to the  integration result x. 
 

Perhaps, this  can be more  eas ily seen if we express  the  above integral as  

the limit of a sum, derived from an approximation of the  integral us ing the 

area  of rectangles, as  shown on the  next s lide. [Recall that 

− ∞ f (x)dx =  lim∆x→0 ∑k= −∞ ∆x f (k∆x ).]  
{ ∞  ∞ 
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Fourie r  Trans form and Frequency Spectra  (Continued 1) Express ing the  integral (from the  previous  s lide) as  the  limit of a sum, we 

obtain 
 

∞ 

x(t) =  lim 
∆ω→0 2π 

k=  

1 ∑ 
−∞ 

∆ω 
1
X (ω′)

1 
e j [ω

′t+ arg X (ω′)], 1 1 

where  ω′ =  k∆ω. 

In the  above equation, the  kth term in the  summation corresponds  to a  

complex s inusoid with fundamental frequency ω′ =  k∆ω that has  had its  

amplitude scaled by a  factor of |X (ω′)| and has  been time shifted by an 

amount that depends  on arg X (ω ′).  
 

For a  given ω′ =  k∆ω (which is  associated with the  kth term in the  

summation), the  larger |X (ω′)| is , the  larger the  amplitude  of its  

corresponding complex s inusoid e jω
′t  will be, and therefore  the  larger the  

contribution the  kth term will make to the  overall summation. 

In this  way, we can use  |X (ω′)| as  a  measure of how much information a  

s ignal x has  at the  frequency ω ′.  
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